Coenzyme Q6 and iron reduction are responsible for the extracellular ascorbate stabilization at the plasma membrane of Saccharomyces cerevisiae.

نویسندگان

  • C Santos-Ocaña
  • F Córdoba
  • F L Crane
  • C F Clarke
  • P Navas
چکیده

Yeast plasma membrane contains an electron transport system that maintains ascorbate in its reduced form in the apoplast. Reduction of ascorbate free radical by this system is comprised of two activities, one of them dependent on coenzyme Q6 (CoQ6). Strains with defects in CoQ6 synthesis exhibit decreased capacity for ascorbate stabilization compared with wild type or with atp2 or cor1 respiratory-deficient mutant strains. Both CoQ6 content in plasma membranes and ascorbate stabilization were increased during log phase growth. The addition of exogenous CoQ6 to whole cells resulted in its incorporation in the plasma membrane, produced levels of CoQ6 in the coq3 mutant strain that were 2-fold higher than in the wild type, and increased ascorbate stabilization activity in both strains, although it was higher in the coq3 mutant than in wild type. Other antioxidants, such as benzoquinone or alpha-tocopherol, did not change ascorbate stabilization. The CoQ6-independent reduction of ascorbate free radical was not due to copper uptake, pH changes or to the presence of CoQ6 biosynthetic intermediates, but decreased to undetectable levels when coq3 mutant strains were cultured in media supplemented with ferric iron. Plasma membrane CoQ6 levels were unchanged by either the presence or absence of iron in wild type, atp2, or cor1 strains. Ascorbate stabilization appears to be a function of the yeast plasma membrane, which is partially based on an electron transfer chain in which CoQ6 is the central electron carrier, whereas the remainder is independent of CoQ6 and other antioxidants but is dependent on the iron-regulated ferric reductase complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic evidence for coenzyme Q requirement in plasma membrane electron transport.

Plasma membranes isolated from wild-type Saccharomyces cerevisiae crude membrane fractions catalyzed NADH oxidation using a variety of electron acceptors, such as ferricyanide, cytochrome c, and ascorbate free radical. Plasma membranes from the deletion mutant strain coq3delta, defective in coenzyme Q (ubiquinone) biosynthesis, were completely devoid of coenzyme Q6 and contained greatly diminis...

متن کامل

Characterization of Phosphate Membrane Transport in Saccharomyces cerevisiae CEN.PK113-5D under Low-Phosphate Conditions Using Aerobic Continuous Culture

Two different growth media, namely complex and defined media, were used to examine establishment of steady-state conditions in phosphate-limited culture system of Saccharomyces cerevisiae CEN.PK113-5D strain. Using the defined growth medium, it was possible to obtain steady state condition in the continuous culture. The effect of phosphate concentration on the growth of S. cerevisiae in pho...

متن کامل

Saccharomyces Cerevisiae as a Biocatalyst for Different Carbonyl Group under Green Condition

In this researchsaccharomyces cerevisiae (baker’s yeast) was used as a cheap, readily accessible, selective, efficient, and green bio-catalyst in a chemo selective reduction of carbonyl group to hydroxyl group. In this green procedure three substrates e.g. (3-(3-nitrophenyl)aziridin-2-yl)-1-phenyl-methanone, pyruvate ester, and 2-acetyl-γ-butyrolactone were r...

متن کامل

Transplasma membrane electron transport comes in two flavors.

All tested cells possess transplasma membrane electron transfer (tPMET) systems that are capable of reducing extracellular electron acceptors at the cost of cytosolic electron donors. In mammals, classically NAD(P)H- and NADH-dependent systems have been distinguished. The NADH-dependent system has been suggested to be involved in non-transferrin-bound iron (NTBI) reduction and uptake. Recently ...

متن کامل

Azo reductase activity of intact saccharomyces cerevisiae cells is dependent on the Fre1p component of plasma membrane ferric reductase.

Unspecific bacterial reduction of azo dyes is a process widely studied in correlation with the biological treatment of colored wastewaters, but the enzyme system associated with this bacterial capability has never been positively identified. Several ascomycete yeast strains display similar decolorizing behaviors. The yeast-mediated process requires an alternative carbon and energy source and is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 14  شماره 

صفحات  -

تاریخ انتشار 1998